A Hensel lifting to replace factorization in list-decoding of algebraic-geometric and Reed-Solomon codes

نویسندگان

  • Daniel Augot
  • Lancelot Pecquet
چکیده

This paper presents an algorithmic improvement to Sudan’s list-decoding algorithm for Reed-Solomon codes and its generalization to algebraic-geometric codes from Shokrollahi and Wasserman. Instead of completely factoring the interpolation polynomial over the function field of the curve, we compute sufficiently many coefficients of a Hensel development to reconstruct the functions that correspond to codewords. We prove that these Hensel developments can be found efficiently using Newton’s method. We also describe the algorithm in the special case of Reed-Solomon codes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient root-finding algorithm with application to list decoding of Algebraic-Geometric codes

A list decoding for an error-correcting code is a decoding algorithm that generates a list of codewords within a Hamming distance from the received vector, where can be greater than the error-correction bound. In [18], a list-decoding procedure for Reed–Solomon codes [19] was generalized to algebraic–geometric codes. A recent work [8] gives improved list decodings for Reed–Solomon codes and alg...

متن کامل

Efficient Interpolation and Factorization in Algebraic Soft-Decision Decoding of Reed-Solomon Codes

Algebraic soft-decision decoding of Reed-Solomon codes delivers promising coding gains over conventional hard-decision decoding. The main computational steps in algebraic soft-decoding (as well as Sudan-type list-decoding) are bivariate interpolation and factorization. We discuss a new computational technique, based upon re-encoding and coordinate transformation, that significantly reduces the ...

متن کامل

A Complexity Reducing Transformation in Algebraic List Decoding of Reed-Solomon Codes

The main computational steps in algebraic soft-decoding, as well as Sudan-type list-decoding, of ReedSolomon codes are interpolation and factorization. A series of transformations is given for the interpolation problem that arises in these decoding algorithms. These transformations reduce the space and time complexity to a small fraction of the complexity of the original interpolation problem. ...

متن کامل

The Re-Encoding Transformation in Algebraic List-Decoding of Reed-Solomon Codes

The main computational steps in algebraic softdecoding, as well as Sudan-type list-decoding, of Reed-Solomon codes are bivariate polynomial interpolation and factorization. We introduce a computational technique, based upon re-encoding and coordinate transformation, that significantly reduces the complexity of the bivariate interpolation procedure. This re-encoding and coordinate transformation...

متن کامل

A Displacement Structure Approach to List Decoding of Reed-Solomon and Algebraic-Geometric Codes∗

Using the method of displacement we shall develop a unified framework for derivation of efficient list decoding algorithms for algebraic-geometric codes. We will demonstrate our method by accelerating Sudan’s list decoding algorithm for Reed-Solomon codes [22], its generalization to algebraicgeometric codes by Shokrollahi and Wasserman [21], and the recent improvement of Guruswami and Sudan [8]...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2000